
 1

Executable Calling Signatures for FRVT 2006 [modified 06-01-18]

1-1 Matching:

executable parameter_file image_directory target_sigset query_sigset similarity_file
quality_target_sigset quality_query_sigset

1-Many Matching:

executable parameter_file image_directory target_sigset query_sigset similarity_file
quality_target_sigset quality_query_sigset

Similarity Score Normalization:

executable parameter_file similarity_file normalized_similarity_file probe_sigset
gallery_sigset

Preprocessing:

executable parameter_file image_directory input_sigset output_image_directory
output_sigset

All Duplicate Detection:

executable parameter_file image_directory target_sigset dup_list

Executable Arguments
Table A describes the arguments used above in the calling signatures for the executables. It is

important to note that all filenames will be relative to the working directory from which the

program is instantiated.

Parameter name Type Format Description
parameter_file Input XML An XML document that specifies experiment

description information, configuration
parameters and the name of metadata files.

image_directory Input string The relative path to the image (data) directory
output_image_directory Output string The relative path to the directory where

preprocessed images should be written.

 2

Parameter name Type Format Description
target_sigset Input Sigset The name of the target signature set. This

document will contain a list of the target
images.

query_sigset Input Sigset The name of the target signature set. This
document will contain a list of the query
images.

similarity_file Input/
Output

Similarity
Matrix

The name of the similarity file. For the 1:1 and
1:many matching experiments, this will be the
primary output data structure. This will be an
input data structure for the similarity
normalization experiment.

quality_target_sigset Output
(optional)

Sigset The name of the target sigset to which quality
scores should be written. This file should be a
copy of the input target sigset with quality
scores added. Ignore this parameter if your
executable does not compute quality scores.
The quality score option is only available for
1-1 matching, not for 1-many matching. For 1-
many matching a filename will be provided to
be consistent with the calling signature.

quality_query_sigset Output
(optional)

Sigset The name of the query sigset to which quality
scores should be written. This file should be a
copy of the input query sigset with quality
scores added. Ignore this parameter if your
executable does not compute quality scores.
The quality score option is only available for
1-1 matching, not for 1-many matching. For 1-
many matching a filename will be provided to
be consistent with the calling signature.

normalized_similarity_file Output Similarity
Matrix

The name of the normalized similarity matrix.
The dimensions of the similarity matrix should
correspond to the size of the gallery and probe
set. In the header, the referencing target sigset
should be the gallery sigset, and the
referencing query sigset should be the probe
sigset.

probe_sigset Input Sigset The name of the probe sigset. This file will
contain a list of probe images to use during
normalization.

gallery_sigset Input Sigset The name of the gallery sigset. This file will
contain a list of gallery images to use during
normalization.

input_sigset Input Sigset The name of the file that contains the list of
image for preprocessing.

output_sigset Output Sigset The name of the file to which the processed
sigset is written. This file should contain the
name of the processed images. This list should
have the same number of images as the

 3

Parameter name Type Format Description
input_sigset.

dup_list Output Duplist The name of the file to which the duplicate list
is written.

Table A Descriptions of executable arguments

Directory Structure
Each participant will be given the directory structure shown in Figure A. All experiments (and

thus executables) will be instantiated from the top level (/home) directory. Executables must be

installed to the /bin directory. Any libraries needed by executables should be installed in the /lib

directory. After installation, both the /bin and /lib directory will be made read and execute only.

All required outputs (similarity matrices, signature sets, duplicate lists) generated during

experiment execution should be written to the /output directory. Users will be given write

permission to the /output directory. The /temp directory should be used for any temporary files

generated during program execution. Users will be given read and write privileges to the /temp

directory. It is important to note that files output to the temporary directory may be deleted prior

to subsequent runs of experiments. Images will be stored outside of the directory structure in

Table A. Users will be given the relative path to the images via the image_directory parameter.

Figure A FRVT 2006 directory structure.

/bin

/lib

/temp

/home

/output

Image Directory
The image directory is a string that specifies the relative path to images. This string should be

appended to each of the data files listed in the Signature Sets. For examples, if the parameter

image_directory is ‘..\images\’ and the Sigset refers to a image named ‘2D\image1.jpg’, you

should process the image in the file ‘..\images\2D\image1.jpg’. Note: the value of the

image_directory argument will be consistent with the underlying operating system. Thus,

‘..\images\’ and ‘../images/’ would be provided for windows and Linux operating system

respectively.

Parameter Files
Overview
Parameter files are XML documents that provide experiment description information and

configuration values for executables. To simplify their processing, configuration values will

always be specified via the values of attributes in the parameter file.

Structure
While the precise content of the Parameter files has not been determined, the structure will be

similar to the example shown below in

Figure B. In this example, elements are depicted blue (capitalized), attributes are red (lowercase)

and attribute values are black (uppercase and in quotes). The Experiment element is the outer

element. It has one attribute named segmentation with value “Automatic”. The Experiment

element has two child elements Target and Query. Both the Target and Query elements have

four attributes: mode, capture, min_recordings and max_recordings.

Figure B Example of a parameter file

<?xml version="1.0"?>
<Experiment name="1_to_Many" type="1-many" feature_extraction_mode="Full"
ground_truth="FRVT2006metadata.xml" >
 <Target mode="3D" capture="Controlled" min_recordings="1" max_recordings="3" pose="Frontal" />
 <Query mode="2D" capture="Uncontrolled" min_recordings="1" max_recordings="1"
pose="Nonfrontal" />
 <LogFile name="1_to_many_logfile.txt" />
</Experiment>

 4

 5

Attribute Type Allowed
Values

Comments

name (Experiment) String The text of this string provides a
name for the experiment. This
attribute is not needed by users.

Type String

Pre ng
Norm tion

task and executable that
this is experiment is being
evaluating.

1-1
1-many

AllDuplicate
processi

aliza

The type of

feature_extraction_mode enumerated Partial
Full und

d_truth. “Full”

is

The enumerated values of this
attribute specify whether gro
truth data is provided to aid in
feature extraction. “Partial”
indicates that ground truth is
provided in the file denoted by the
attribute groun
indicates that ground truth data
not provided.

Mode enumerated 2D
3D

The enumerated values of this
attribute specify whether the
images are 2D or 3D face images.

Capture enumerated Controlled
Uncontrolled

s
e

 captured under

The enumerated values of thi
attribute specify whether th
images were
controlled or uncontrolled
conditions.

min_recordings integer >0 um This integer specifies the minim
number of images that will be
associated with a signature.

max_recordings integer >0 ximum

e.

This integer specifies the ma
number of images that will be
associated with a signatur

Pose string Frontal
Nonfrontal

Pose variation of the biometric
signatures in the sig-set.

Name (LogFile) string Filename d
 should be written to

this file in the output directory.

All logging information generate
by the program

Table B Description of elements in the similarity header.

 6

r.

 in the

t) distribution. These classes, which use the XPath

RVT 2006 participants. Parsers will not be made available for other

eate parsers in other

languages using the C++ classes as a guide.

 will not be required to write (output) Parameter files.

Parsing
Due to their simple structure, Parameter files are readily parsed with any XML or XPath parse

Source implementation of C++ and Java classes for parsing Parameter files are provided

BEE (Biometric Experimentation Environmen

parser, are available to F

languages (e.g. Matlab). However, users should be able to easily cr

Writing
FRVT users

Signature Sets (Sigsets)
Overview
Signature Sets (Sigsets) are the primary input structure for FRVT 2006. They will use used to list

ects,

r more Presentation child elements

ore

re

d to the

Presentation “10928A” consists of a single 2D facial image stored in the JPEG file

the files in the Target and/or Query sets. They will also be an output format created by

preprocessing executables.

Structure
The Signature Set document will provide a list of images. XML will be used because its

hierarchical structure facilitates a flexible representation of the relationships between subj

sessions, sensors and files. Specifically, the Signature Set will consist of a list of Signature

(subjects) element. Each Signature element will contain one o

that correspond to capture sessions. Each Presentation element will contain one or more

Component elements that correspond to a sensor. Lastly, each Component will have one or m

Data elements that correspond to a file.

Figure C illustrates the general Signature Set structure with elements depicted blue, attributes

depicted red (lowercase) and attribute values depicted black (uppercase and in quotes). This

example has two complex-biometric-signature elements and thus represents two subjects.

(Note: While presentation-components grouped under a single complex-biometric-signatu

are guaranteed to correspond to the same subject, separate signatures may correspon

same subject.) The signatures are named “10928” and “10929”. Signature “10928” has two

presentation-components (capture sessions) labeled “10928A” and “10928B” respectively.

 7

re in ABS format in file “data/02465.jpg”.

Signature “10929” has a single presentation-component that corresponds to a single 2D facial

image stored in the JPEG file “data/02466.jpg”.

“data/02463.jpg”. Presentation “10928B” consists of a 3D face image store as a JPEG textual

map in file “data/02464.jpg” and a shape map sto

<?xml version="1.0" encoding="UTF-8"?>
<biometric-signature-set xmlns="http://www.bee-biometrics.org/schemas/sigset/0.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bee-biometrics.org/schemas/sigset/0.1
 http://www.bee-biometrics.org/schemas/sigset/0.1/general.xsd">

 <complex-biometric-signature name="10928" >
 <complex-presentation name="10928A" modality="face" >
 <presentation-component name="10928A_2D_face" >
 <data file-name="data/02463.jpg" file-format="jpeg" />
 </presentation-component>
 </complex-presentation>
 <complex-presentation name="10928B" modality="face" >
 <presentation-component name="10928_3D_face_shape" >
 <data file-name="data/02464.jpg" file-format="jpeg" />
 </presentation-component>
 <presentation-component name="10928_3D_face_texture" >
 <data file-name="data/02465.abs" file-format="abs" />
 </presentation-component>
 </complex-presentation>
 </complex-biometric-signature>
 <complex-biometric-signature name="10929" >
 <complex-presentation name="10929" modality="face" >
 <presentation-component name="10929" >
 <data file-name="data/02466.jpg" file-format="jpeg" />
 </presentation-component>
 </complex-presentation>
 </complex-biometric-signature>
</biometric-signature-set>

Figure C Example of a Signature Set.

Parsing
Signature sets are difficult to parse due to their rich hierarchical structure. Fortunately, C++ and

Java classes for parsing Similarity Matrices are provided in the BEE (Biometric Experimentation

Environment) distribution. These classes are available to FRVT 2006 participants. We also

provide examples or the use of these parsers. It is important to note that some of the BEE

examples assume the simplified Sigset structure in which each Signature has precisely one

Presentation, each Presentation has precisely one Component and each Component has precisely

one Data member. Care should be used which using this simplified version of the Similarity

 8

 9

structure. Parsers are not provided for other languages (e.g. Matlab). However, users should be

able to create a Java wrapper that parses the Signature Set and passed the appropriate data

structures to this executables.

Writing
Like most XML documents, Signature sets are easier to write than they are to parse. Thus, users

can either use the C++ and Java classes supplied in BEE to create Signature Sets or output them

directly. We recommend that the supplied classes be used because they have been rigorously

tested and can easily be made compliant with changes in the schema for Signature Sets.

Similarity Matrices
Overview
Similarity Matrices are the primary output structures of recognition algorithms in FRVT 2005.

They consist of a header that specified the type and dimension of the contained data and the

N×M scores from the biometric algorithm.

Structure
The Similarity Matrix is similar to many image files in that it contains a textual header

prepended to a binary representation of a N×M data structure. The structure of the header is

depicted below in Figure D. Here, we see that the header consist of four lines. The first line must

contain the either the character ‘D’ (for distance matrix) or the character ‘S’ (similarity matrix)

followed by the character ‘2’. The second and third lines should contain the name of the target

and query signature set respectively. The target and query name should be the same as they were

specified in the call to the matching executable. The fourth line should contain the characters

‘MF’, a space, the number of signatures in the query sigset, a space, the number of signatures in

the target sigset, a space and the integer 0x12345678 written in binary format. All four lines in

the header should be terminated by an end-of-line character. Table C describes the elements in

the similarity header.

D2
BEE_DIST/signature_sets/ICE_Exp_1.0.1_Target.xml
BEE_DIST/signature_sets/ICE_Exp_1.0.1_Query.xml
MF 1425 1425 xV4

Figure D Example of the Similarity Matrix header.

Name Format Separator Comments
Storage Type Character ‘S’ or ‘D’ none Specified similarity scores, ‘S’, or

distance measures ‘D’.
Version The character ‘2’ eol The value ‘2’ corresponds to the

version of similarity matrix.
Target name string eol This string should be the same as the

name of the target sigset provided to the
matching algorithm.

Query name string eol This string should be the same as the
name of the query sigset provided to the
matching algorithm.

Format The characters ‘MF’ space The values correspond to a matrix, ‘M’,
containing float, ‘F’, values.

Rows integer space The number of signatures in the query
set.

Cols integer space The number of signatures in the target
set.

Magic number 0x12345678
(4-bytes binary)

eol This binary value is used to check for
Endian (byte swapping).

Table C Description of elements in the similarity header.

The scores are written to the file immediately following the header. These should be N×M 4-byte

binary floating point values. Here, N is the number of signatures in the query set and M is the

number of signatures in the target set. Thus, the first M values correspond to comparing the first

query image to each of the target images. There must not be any white space characters

separating scores in the body of the Similarity Matrix.

Parsing
C++ and Java classes for parsing Similarity Matrices are provided in the BEE (Biometric

Experimentation Environment) distribution. These classes will are available to FRVT 2006

participants. Parsers will not be made available for other languages (e.g. Matlab). However, users

should be able to easily create parsers in other language using the C++ classes as guides.
 10

Writing
C++ and Java classes for writing Similarity Matrices are provided in the BEE (Biometric

Experimentation Environment) distribution. These classes are available to FRVT 2006

participants. Parsers will not be made available for other languages (e.g. Matlab). However, users

should be able to easily write Similarity Matrices in other language using the C++ classes as

guides.

Duplicate List (Dup List)
Overview
A duplicate (dup) list is an XML document that list signatures grouped by common signatures

(subjects). Each Group element corresponds to a unique subject and the enclosed Signature

elements correspond to the signatures or that subject in the corresponding signature set.

Structure
The structure of Dup List is shown below in Figure E. Here, elements are depicted blue

(capitalized), attributes are red (lowercase) and attribute values are black (uppercase and in

quotes). The example consists of an enclosing Groups element that has zero or more member

elements named Group. Each Group element has an optional name attribute that provides a name

for the group and two or more member elements named Signature. Each signature has an id

attribute and an optional confidence attribute. The id attribute must reference a signature name in

the corresponding sigset. The confidence attribute provides an integer score (0-100)

corresponding to an user defined confidence level

<?xml version="1.0" encoding="UTF-8"?>
<Groups>
 <Group name=”first_group_name” >
 <Signature id=”signature_id” confidence=”85” />
 <Signature id=”signature_id” confidence=”75” />
 <Signature id=”signature_id” confidence=”100” />
 </Group>
 <Group name=”second_group_name” >
 <Signature id=”signature_id” confidence=”55” />
 <Signature id=”signature_id” confidence=”95” />
 </Group>
</Groups>

Figure E Example of the Dup List

 11

 12

Parsing
FRVT users will n

Writing
We will provide C , these classes are

not available since can output Dup

List directly within very simple.

Log Files

ot be required to parse Duplicate Lists.

++ and Java classes for writing Duplicate Lists. Currently

 Duplicate Lists are new to FRVT 2006. Also, participants

 their programs since the Dup List structure is

Each executable sh a log file. The name (and directory) for the log file will be

provided in the parameter file via the element. The log file should

fficient information so that we (with your limited support) can easily and quickly

e to troubleshoot programs, please

essages in your log file.

ould produce

name attribute of the LogFile

provide su

troubleshoot your algorithm. Since we will have limited tim

provide detailed debug m

